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Abstract

A finite element is presented to analyze the three-dimensional (3-D) vibration of piezoelectric coupled circular and
annular plates. The proposed finite element is a modification of a conventional axisymmetric finite element and is capable
of conducting both axisymmetric and nonaxisymmetric vibration analysis of circular and annular laminated plates, with
piezoelectric layers therein. The present formulation, a two-dimensional model itself, can investigate 3-D vibration of those
plates for a preselected number of nodal diameters, and is therefore more economical than the conventional 3-D finite
element analysis, yet still has almost the same accuracy and versatility as the 3-D analysis. In cases such as analysis of
stators of traveling wave ultrasonic motors where only vibration modes with particular numbers of nodal diameters are of
interest, the proposed approach is very convenient and useful.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Circular and annular plates of piezoelectric materials or their laminations with other materials are becoming
more and more important machine or electric elements, especially in sensors and actuators. To take good
advantage of these materials, a thorough understanding of the behaviors of those plates is a necessity. Among
them, the vibration characteristics are probably most important and are studied most often due to the fact that
many applications use the resonant characteristics of piezoelectric circular and annular plates.

Most of the techniques used to analyze the vibration of piezoelectric circular and annular plates can be
classified into two categories: one is based on plate theories, such as Wang et al. [1], Huang [2], Hadegorn and
Wallaschek [3], Hagood and McFarland [4], Hagedorn et al. [5], Friend and Stutts [6], and Ming and Peiwen
[7]. In these researches, vibrations of piezoelectric circular plate or its lamination with elastic plate have been
analyzed by classical plate theories, which neglect transverse shear deformation and, in most of the cases,
rotary inertia except [3]. Liu et al. [8] then applied a first-order shear deformation plate theory, which
considered transverse shear deformation and rotary inertia in some way, to investigate vibration of
piezoelectric coupled moderately thick circular plates. Duan et al. [9] have studied vibration of piezoelectric
coupled thin and thick annular plates based on both classical and Mindlin plate theories and derived analytic
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solutions. The other category are of three-dimension-elasticity-based analyses, including the two-dimensional
(2-D) axisymmetric analyses such as Kagawa and Yamabuchi [10], Adelman et al. [11], Guo et al. [12], and
Kunkel et al. [13], which are all axisymmetric finite element analyses. Heyliger and Ramirez [14] have
combined finite element method (thickness direction) and Ritz method (radial direction) to model the
vibration of laminated circular piezoelectric plates. Exact three-dimensional (3-D) axisymmetric vibration
analyses for transversely isotropic piezoelectric circular plates under particular types of boundary conditions
have been conducted by Ding et al. [15]. Results of vibration frequencies obtained from 3-D finite element
analyses, which can study axisymmetric and nonaxisymmetric vibrations, are presented in Ref. [16] by Lin and
Ma and also in Ref. [9], and are compared with those of experiments [16] and different plate theories [9],
respectively.

Plate-theory-based approaches are simple from view point of analysis and is economical in computation
because of its 2-D nature. However, accuracy of classical-plate-theory results degrades when plate thickness
becomes larger due to their assumptions and approximations. Shear deformation theories have been evolved
to overcome the shortcomings of the classical ones and is usually proved to be superior. Nevertheless, they
overestimate in some cases and underestimate in other cases. On the contrary, analyses based on the 3-D
theory are most general and can reveal every aspects of vibration behaviors. However, they are also hard to
solve analytically for most of the cases and are very time-consuming to solve the problems numerically, not
mentioning the enormous output from which meaningful results can be extracted and interpreted only with
greater effort.

In the present study, a finite element is developed, which is a modification of a previous one [17] by
including the piezoelectric effect. The present element has the capability to conduct 3-D axisymmetric
and nonaxisymmetric vibration analysis of piezoelectric coupled circular and annular plates, yet still remains
itself a 2-D approach. Since it analyzes directly the vibration frequencies and modes with a specific number
of nodal diameters, the proposed approach could be especially useful for the design of traveling wave
ultrasonic motors and the likes where the actuated traveling wave is formed by simultaneously exciting two
standing waves which have the same, selected number of nodal diameters and are out of phase temporally and
spatially [18].

2. Formulation

The field variables are assumed as follows:

u,(r,0,z,t) = u(r, z) cos nf sin wt,
up(r,0,z,t) = v(r, z) sin nf sin wt,
u.(r,0,z,t) = w(r, z) cos nb sin wt,
¢(r,0,z,t) = &(r,z) cos nb sin wt. (D

u,, ug, u, are displacements in the radial, tangential, and thickness directions of circular plates, and r, 0, z are
the corresponding coordinates when a cylindrical coordinate system is used. ¢ is time. # is number of nodal
diameters. w is vibration frequency in radians/s. Electric potential ¢ also appears as dependent variable
because of the inclusion of piezoelectric effect. Synchronous motion is assumed as always.

The above formulae are a modification of a previous research on vibration of circular and annular
plates [17] by taking the electromechanical effect into consideration. They are also the same as those shown in
Ref. [14].

For a piezoelectric material, the electromechanical constitutive equations are:

{T} = [C){S} — [e]"{E},
{D} = [e]{S} + [)(E}, )

where {T}, {S}, and {E} are 6 x 1 vectors of stresses, strains and a 3 x 1 vector of electric fields, respectively.
{D} is vector of electric displacements. [C] is elastic stiffness matrix at constant electric fields and [¢] is
dielectric matrix at constant strain. [e] is piezoelectric matrix. Superscript T represents transpose.
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For a hexagonal crystal (6 mm) piezoelectric ceramics poling in the z-direction, the elastic stiffness matrix,
the piezoelectric matrix and the dielectric matrix have the following forms:

[crn ci2 3 0 0 07
cn ¢ 3 0 0 0
c3 e3¢z 0 0 0
=10 0 0 @ o of
0 0 0 0 e¢5 O
0 0 0 0 0 9cg
. 0 0 0 0 €5 O )
[(l=]0 0 0 e4 0 O],
e33 exn ez 0 0 0
ar 00
[el=| 0 & O (€)
i 0 0 é&33
with ¢11 = €22, €13 = €23, Caa = 55, Co6 = (C11—C12)/2, €24 = €15, €31 = €3, and 11 = .

The above constitutive equations apply to layers of piezoelectric material. For the elastic layer to which the
piezoelectric layers stick, the proper constitutive equation should be used and only the stiffness matrix appears
without the piezoelectric and the dielectric ones

The strain—displacement relations are defined as

%
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u, 10uy
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and the six stress components in the stress vector are 71 =o0,, 1> =0y, T3 =0., T4 =19, T5=1,., and
T(, = T,0-
The electric field-potential relation is also needed
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The variational form for a piezoelectric material is

t
02/ dt/[Ti(Ss,-—i-DjéEj—i—piikéuk]dv,
Ity v
i=1-6, j=1-3, k=r0,z (6)

where the double dot denotes acceleration.

After substituting Egs. (1)—(5) into Eq. (6), all the terms in the variational form are expressed in the three
displacements and the electric potential which, as in the conventional finite element procedure, are substituted
further with

nd

ur,2) =Y N,
1

nd

u(r,z) = ZNiUi’
1
nd
w(r,z) = ZN,-W,-,
1

nd
O(r,z) = Nig,,
1

where N, is shape function and u;, v;, w;, ¢; are nodal values of the dependent variables. nd is the number of
nodes in an element.
The following elemental equation is thus obtained:

[kuu] [kugb]
[kgul ko]

{Ue}
{Pc}

{Ue}
{Pe}

— 2 [mu]  [0]
B 0] [0]

where {U.} =[ujur.. . Upg 0102...00q wWiws... wm;]T and {®.} =[¢p, ¢, - qbnd]T. Expressions for the
stiffness matrix [k,,], the piezoelectric matrix [k,4] = [k¢u]T, the dielectric matrix [k44], and the mass matrix
[m,,] are shown in the appendix.

After assembling the above equations for all the elements in the mesh, system equation is derived as follows:

[Kuu] [Ku(ﬁ] ) [Muu] [O]
[Kusl™  [Kps] I (/I (1

{U}
{2}

{U}
{2}

For free vibration analysis, the electric potential on the electroded surfaces of the piezoelectric layers are set
to zero, and these boundary conditions on ¢ can be imposed on the top and bottom surfaces of the
piezoelectric circular layers in the following way: the rows of [Kuq,]T and [K,,], and the columns of [K,,,] and
[K,,] corresponding to the specified zero nodal potential degrees of freedom are set to zero first, then the
corresponding diagonal entries in [K,,] are set to 1. We end up with the following equation with all the zero
potential boundary conditions satisfied:

[Kud — [K}y)
K" [K;]

{U}
{P}

{u)

(@ | @

_ o[l D0
o o

For the elastic layers, the electromechanical effects are not considered at all. The present formulation
becomes the one shown in Ref. [17] where only [K,,,], [M,.], and [U] are nonzero, and the validity and accuracy
of the present approach for pure elastic material has also been demonstrated in Ref. [17].

Eq. (7) cannot be solved directly to get the vibration frequencies due to the appearance of the zero matrices.
A static condensation of the electric potential degrees of freedom is conducted as in Ref. [19] and the following
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equation is obtained:

() = (K3 JIK 1 K] ) U] = 0P Ml U,

This is the equation that we use to solve the natural frequency w. The mechanical boundary conditions are
imposed in the usual way of the finite element method.

3. Results and discussions

To test the validation and accuracy of the present element, three cases are analyzed and compared with the
literature. The first one is a wholly piezoelectric circular plate of PIC-151 with diameter 30 mm, thickness
1 mm, completely coated with electrodes on both surfaces and of free boundary condition. Table 1 lists the
material properties. Results of the present method are compared with those of a 3-D finite element solution by
ABAQUS and experiments [16]. High accuracy of the present method is demonstrated by the excellent
agreement between ABAQUS 3-D solutions and the present ones, as shown in Table 2. In the table, mode nos.
3—6 with n = 0 are of in-plane modes while the others are all out-of-plane modes. Some other modes lying in
between those shown in Table 2 are also derived in the present study. They are not presented here because
there are no counterparts in Ref. [16] to compare with.

The second one is analysis of a laminated annular plate consisting of one host layer of steel and two
piezoelectric layers on the top and bottom surfaces of the host layer. Material properties for steel are
E =200GPa, v=0.3, and p = 7800kg/m® and those for the piezoelectric material (PZT4) are also shown in
Table 1. The host plates of steel with thicknesses 0.02 and 0.06 m are studied, which correspond to a thin and a
thick plate when the inner and outer radii are of the same 0.1 and 0.6 m for both thicknesses. Piezoelectric
layer has a thickness which is 1/20 of that of the host layer. These are example problems studied also by Duan
et al. [9] with exact methods based on the classical plate theory and the Mindlin plate theory, and by ABAQUS
3-D finite element method. A convergence test with the present approach is first conducted and shown in
Table 3. Convergence is considered reached when the discrepancy between two consecutive meshes is within
0.5%. From Table 3, a monotonic convergence is observed that the natural frequency becomes smaller when
the mesh is finer. This is typical for all the boundary conditions and for both the thin and thick laminated
plates. With these convergence trends in mind, those two laminated plates under four types of boundary
conditions (c—c, c-s, s—¢, s—s with ¢ being clamped and s simply supported, the former one for inner edge and
the latter outer edge) are analyzed and demonstrated in Table 4 (thick plate, mesh 20 x 10) and Table 5 (thin
plate, mesh 50 x 6). Each piezoelectric layer is modeled as one layer of finite elements in both cases.
Comparisons are being made with those in Ref. [9]. From Tables 4 and 5, we may find that the discrepancy of
frequencies between the present results and those by the classical plate theory is greater for larger n (number of

Table 1
Properties of piezoelectric ceramic materials

PIC-151 [16] PZT4 [9] PZT(NEPECS) [20]
&,/ 1111 804.6 730
&3/ 925 659.7 635
cﬁ(lO‘O N/m?) 10.76 13.2 13.9
& 10.04 11.5 11.5
o 6.313 7.1 7.78
k 6.386 7.3 7.43
ki 1.962 2.6 2.56
cE, 2.224 3.05 3.06
31 (C/m?) —9.52 —4.1 -52
e 15.14 14.1 15.1
ers 11.97 10.5 12.7
p (10°kg/m®) 7.8 7.5 7.6

&0 = 8.854 x 1072 F/m.
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Table 2
Natural frequencies (Hz) for a piezoelectric circular plate under free boundary condition, n: number of nodal diameters, mesh 20 x 2,
numbers in parentheses represent percentage difference compared to the present ones

n Mode no. Present ABAQUS 3-D [16] Experiment [16]
0 1 6985 6989(0.06%) 6050(—13.4%)
2 27,344 27,924(0.29%) 25,550(—8.24%)
3 64,368 64,368(0%) 70,500(9.52%)
4 167,404 167,404(0%) 180,279(7.69%)
5 265,152 265,147(0%) 288,900(8.96%)
6 361,015 360,988(0%) 390,400(8.14%)
1 1 15,070 15,094(0.16%) 13,574(—9.93%)
2 1 3190 3192(0.06%) 3230(1.25%)
2 25,087 25,157(0.28%) 23,060(—8.08%)
3 1 7481 7492(0.15%) 7568(1.16%)
4 1 13,174 13,204(0.23%) 13,310(1.03%)
5 1 20,177 20,243(0.33%) 20,257(0.39%)
Table 3

Convergence of natural frequencies (rad/s) for a laminated annular plate of steel (thickness 0.06 m) and piezoelectric ceramic layers under
clamped-clamped boundary condition, n: number of nodal diameters, m: number of nodal circles

n m Mesh 20 x 3 20 x 6 20 x 10
0 0 7536 7439 7435
1 18,865 18,527 18,515
2 33,431 32,715 32,692
1 0 7848 7751 7746
1 19,398 19,062 19,050
2 33,799 33,314 33,291
2 0 9275 9176 9172
1 21,264 20,922 20,912
2 35,983 35,253 35,233

nodal diameters) and m (number of nodal circles), and for thicker plates under all the various boundary
conditions. The classical plate theory overestimates vibration frequencies, as expected. However, when the
Mindlin plate theory is applied to thin plates, frequencies derived are still higher than those of the present
approach, and the difference is smaller for larger » and m. The Mindlin plate theory takes into account
transverse shear deformation and rotary inertia which soften the plates and makes the vibration slower. These
effects are more pronounced for higher modes (larger » and m) with all the four types of boundary conditions
and that is justified from the relatively smaller differences compared with the present solutions. As the thick
plates are concerned, remedies proposed by the Mindlin plate theory over the classical plate theory have even
more effects of reducing vibration frequencies, and actually overshoot for higher modes under all the four
boundary conditions except s—s. This can cause difficulties when judging if the Mindlin plate theory gives
upper bound or lower bound solutions. However, the results of the Mindlin plate theory are still much better
than those of the classical plate theory, based on comparisons with the present solutions, in all the cases
studied. As to the ABAQUS 3-D solutions, which are supposed to be the lowest among the present method
and the classical plate theory, are unanimously higher than the present ones with differences between 1% and
4%. From the convergence test in Table 3, it is clear that finer mesh leads to lower frequency. Therefore, a
conjecture for the overestimations of ABAQUS results might be due to coarse finite element meshes used in
Ref. [9] to derive ABAQUS 3-D solutions.

The third example is an analysis of the stator of a traveling wave ultrasonic motor which is designed to
utilize the (0, 9) mode to produce the traveling wave. This is an example analyzed in Ref. [20] with
the configuration of the stator and the arrangement of electrodes shown in Fig. 1, which is duplicated from
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Table 4

Natural frequencies (rad/s) for a laminated annular plate of steel (thickness 0.06m) and piezoelectric ceramic layers under different
boundary conditions, n: number of nodal diameters, m: number of nodal circles, numbers in parentheses represent percentage difference
compared to the present ones

B.C. n m Present ABAQUS 3-D [9] Classical plate theory [9] Mindlin plate theory [9]
c—C 0 0 7435 7608(2.3%) 8444(14%) 7416(—0.26%)
1 18,515 18,828(1.7%) 23,358(26%) 18,235(—1.5%)
2 32,692 33,096(1.2%) 45,917(40%) 31,869(—2.5%)
1 0 7746 7918(2.2%) 8857(14%) 7728(—0.23%)
1 19,050 19,358(1.6%) 24,089(26%) 18,774(—1.4%)
2 33,291 33,685(1.2%) 46,824(41%) 32,468(—2.5%)
2 0 9172 9336(1.8%) 10,571(15%) 9169(—0.033%)
1 20,912 21,199(1.4%) 26,520(27%) 20,639(—1.3%)
2 35,233 35,591(1.0%) 49,706(41%) 34,397(—2.4%)
cs 0 0 5031 S5171(2.8%) 5528(9.9%) 5064(0.66%)
1 15,531 15,924(2.5%) 18,661(20%) 15,500(—0.20%)
2 29,489 30,188(2.4%) 39,332(33%) 29,201(—0.98%)
1 0 5369 5512(2.7%) 5950(11%) 5406(0.69%)
1 16,070 16,464(2.4%) 19,376(20%) 16,048(—0.14%)
2 30,104 30,803(2.3%) 40,232(34%) 29,827(—0.92%)
2 0 6838 6990(2.2%) 7604(11%) 6907(1.0%)
1 17,978 18,376(2.2%) 21,776(21%) 17,986(0.044%)
2 32,110 32,806(2.2%) 43,101(34%) 31,854(—0.80%)
s—C 0 0 6045 6218(2.9%) 6647(10%) 6125(1.3%)
1 16,469 16,939(2.8%) 19,845(20%) 16,536(0.41%)
2 30,325 31,161(2.8%) 40,594(34%) 30,197(—0.42%)
1 0 6479 6664(2.8%) 7337(13%) 6555(1.2%)
1 17,126 17,593(2.7%) 20,949(22%) 17,172(0.27%)
2 31,000 31,809(2.6%) 41,883(35%) 30,826(—0.56%)
2 0 8470 8650(2.1%) 9707(15%) 8528(0.68%)
1 19,496 19,909(2.1%) 24,357(25%) 19,453(—0.22%)
2 33,291 33,990(2.1%) 45,821(38%) 32,959(—1.0%)
s—s 0 0 3912 4032(3.1%) 4187(7.0%) 3997(2.2%)
1 13,547 14,030(3.6%) 15,593(15%) 13,775(1.7%)
2 27,117 28,159(3.8%) 34,466(27%) 27,430(1.2%)
1 0 4361 4498(3.1%) 4840(11%) 4450(2.0%)
1 14,223 14,716(3.5%) 16,674(17%) 14,443(1.5%)
2 27,822 28,852(3.7%) 35,753(28%) 28,102(1.0%)
2 0 6332 6484(2.4%) 7064(12%) 6433(1.6%)
1 16,688 17,162(2.8%) 20,008(20%) 16,859(1.0%)
2 30,222 31,183(3.2%) 39,676(31%) 30,385(0.54%)

Ref. [20]. The stator is a laminated ring of brass and PZT with a poling pattern shown in Fig. 1. The brass
has material properties E = 100.6GPa, v =0.35, and p = 8560kg/m® and the material constants of
PZT(NEPEC6) are shown in Table 1. The frequency of (0,9)-mode obtained by experiment and 3-D finite
element steady-state response analysis in Ref. [20] are 45.672(kHz) and 45.682, respectively, compared with
45.898 of the present analysis. The discrepancy between the experiment and the present one is just a small
0.49%. The reason for the overestimation of the present solution might be due to the whole-ring-poling
assumption of the piezoelectric layer in the present approach, while there are unpolarized regions in the real
stator. Poling could lead to stiffening of a structure, the so-called ‘piezoelectric stiffening’ [14]. Another reason
might be the existence of damping, however, it is generally of little effect on vibration frequency. It is also
noteworthy that, by setting the number of nodal diameters n = 9, the frequency of (0,9)-mode is easily found
in the present analysis, while in 3-D finite element analysis, it is hardwork to locate the frequency of a
particular mode.
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Natural frequencies (rad/s) for a laminated annular plate of steel (thickness 0.02m) and piezoelectric ceramic layers under different
boundary condition on both inner and outer edges, n: number of nodal diameters, m: number of nodal circles, numbers in parentheses
represent percentage difference compared to the present ones

B.C. n m Present ABAQUS 3-D [9] Classical plate theory [9] Mindlin plate theory [9]
c—C 0 0 2724 2812(3.2%) 2815(3.3%) 2769(1.6%)
1 7418 7659(3.2%) 7786(5.0%) 7517(1.3%)
2 14,289 14,753(3.2%) 15,306(7.1%) 14,428(0.97%)
1 0 2853 2942(3.1%) 2952(3.5%) 2899(1.6%)
1 7642 7882(3.1%) 8030(5.1%) 7743(1.3%)
2 14,557 15,020(3.2%) 15,608(7.2%) 14,698(0.97%)
2 0 3381 3471(2.7%) 3506(3.7%) 3438(1.7%)
1 8394 8635(2.9%) 8840(5.3%) 8507(1.3%)
2 15,416 15,877(3.0%) 16,569(7.5%) 15,566(0.97%)
c—s 0 0 1790 1848(3.2%) 1843(3.0%) 1823(1.8%)
1 5967 6164(3.3%) 6220(4.2%) 6066(1.6%)
2 12,357 12,770(3.3%) 13,111(6.1%) 12,523(1.3%)
1 0 1922 1981(3.1%) 1983(3.2%) 1957(1.8%)
1 6187 6384(3.2%) 6459(4.4%) 6289(1.6%)
2 12,625 13,038(3.3%) 13,411(6.2%) 12,794(1.3%)
2 0 2448 2511(2.6%) 2535(3.6%) 2495(1.9%)
1 6934 7134(2.9%) 7259(4.7%) 7050(1.7%)
2 13,490 13,903(3.1%) 14,367(6.5%) 13,672(1.3%)
s—C 0 0 2152 2213(2.8%) 2216(3.0%) 2194(2.0%)
1 6345 6544(3.1%) 6615(4.2%) 6455(1.7%)
2 12,755 13,169(3.2%) 13,531(6.1%) 12,934(1.4%)
1 0 2352 2418(2.8%) 2446(4.0%) 2397(1.9%)
1 6663 6865(3.0%) 6983(4.8%) 6774(1.7%)
2 13,112 13,528(3.2%) 13,961(6.5%) 13,293(1.4%)
2 0 3102 3178(2.4%) 3236(4.3%) 3159(1.8%)
1 7692 7902(2.7%) 8119(5.6%) 7815(1.6%)
2 14,243 14,663(2.9%) 15,274(7.2%) 14,428(1.3%)
s 0 0 1358 1395(2.7%) 1396(2.8%) 1388(2.2%)
1 5014 5173(3.2%) 5198(3.7%) S5115(2.0%)
2 10,921 11,283(3.3%) 11489(5.2%) 11,114(1.8%)
1 0 1551 1593(2.7%) 1613(4.0%) 1583(2.1%)
1 5328 5490(3.0%) 5558(4.3%) 5433(2.0%)
2 11,283 11,647(3.2%) 11,918(5.6%) 11,478(1.7%)
2 0 2260 2312(2.3%) 2355(4.2%) 2306(2.0%)
1 6348 6521(2.7%) 6669(5.0%) 6468(1.9%)
2 12,428 12,798(3.0%) 13,225(6.4%) 12,632(1.6%)
Unpolarized region
0f) W ~
Electrode B Electrode A
Brass HLN
o A
electrode
(ground) 3 Aos

Electrode

Unpolarized region

Fig. 1. Stator configuration and electrode arrangement for ninth flexural mode excitation. Units in mm. Polarization direction: @, z-axis
positive; O, z-axis negative (same as Fig. 2 in Ref. [20]).
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Considering the accurate results of the present approach shown in the above three analyses, the accuracy of
the present approach can thus be validated. Besides, vibration of piezoelectric circular or annular plates is
analyzed with the number of nodal diameters preselected in the present formulation. This is a feature
especially suitable for the design work of traveling wave ultrasonic motors where only a few of frequencies and
modes with particular circumferential wave numbers are of interest, and it also offers the advantage to
perform 3-D analyses with a 2-D finite element.

4. Conclusions

In the present research, a modified axisymmetric finite element is proposed. The finite element takes into
account the electromechanical effects and has the capability to conduct 3-D axisymmetric and
nonaxisymmetric vibration analysis of piezoelectric laminated circular and annular plates. The present
approach is totally based on the 3-D electroelasticity with the only assumption that the motion of the plates is
temporally and circumferentially harmonic. A special feature of the present formulation is that 3-D vibration
behaviors of piezoelectric circular plates can be analyzed with a 2-D finite element when the circumferential
wave number is chosen. This is especially useful for the analysis of stator of traveling wave ultrasonic motor
where only vibration frequencies and modes with some particular circumferential wave numbers are of
interest.

Validity and accuracy of the present approach are confirmed by comparing the present results of three
example problems to those in literature—one being a piezoelectric circular plate, another dealing with a thin
and a thick laminated annular plates of piezoelectric ceramics and steel, and the third one is the analysis of the
stator of a traveling wave ultrasonic motor. For the entirely piezoelectric circular plate case, solutions of
vibration frequencies by the present method are in excellent agreement with 3-D results by ABAQUS, so is the
case of the stator analysis with experiment result. While in the laminated plate cases, the present solutions are
compared with those by the classical plate theory, the Mindlin plate theory, and ABAQUS 3-D finite element.
Although discrepancies exist among these methods, they can be explained properly and satisfactorily.

Owing to the numerous possibilities of combinations of materials and geometric aspect ratios, the
conclusions drawn from the example problems should not be over-stretched. Analysis might be needed for
each particular problem, and in that case, the present method can be considered a convenient and practical
alternative when vibration of circular and annular laminated piezoelectric plates is concerned.

Appendix
kll k12 k13 mll 0 0 k14
[kuu] — k21 k22 k23 , [muu] — 0 m22 0 , [ku(/)] — k24 ,
k31 k32 k33 0 0 m33 k34

(kll)g/ = /(CllNi,rN/',r + ¢1oNiyN; /1 + c1aNiN;,/r + et N;N; /1

+ csaNi-N; - + ceen* N -N;. /rH)nrdrdz,

(klz)l.j = /(clani,,Nj/r — ¢ NN, /v + cllnNiNj/rz + 666nNiNj/72)7rrdrdz,
(k13)ij = /(CISNi,rNj,: + ¢13NiN;./r+ csaN;-N;,)nrdrdz,

(kzz)ij = /(6‘11’12]\71']\71'/”2 + Cc44Ni-Nj- 4 cesNiNj, — ceeNiN;/r

— ce6NiNj, /1 + CééNjN/‘/rz)TEV drdz,
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k), = / (¢13nN;N,./r — caanN;.N;/r)mnrdrdz,

(k33)ij = /(033N1',2Nj,z + C44N,-,rNj’r + C44n2N,'Nj/}’2)TEV drdz,

(kzl)j[ — (kIZ)U’ (k3l)ji — (k13),1’ (k32)_/‘[ — (k23)l/,

(m””)ij = p/(N,Nj)nrdrdz, p=1-3,
(km)g,' = /(elsNi,;Nj,r +e31 N Nj. +e3 N;N;./r)nrdrdz,
(k24),:,» = /(—elan[,ZNj/r + e3nN;N;./rynrdrdz,
(K™, = / (e1sNi,Nj, + e1s®NiN; /i + 3NN, )mr drdz,

[kppl = (kpp)y = — /(ellNi,,.Nj,,. + .z:llnzN,-Nj/r2 +&33N; N, )nrdrdz,

where i, j = 1-nd.
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